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Abstract: Pattern recognition is a developing discipline within the field of artificial intelligence that can be used 
to solve chemical problems. Possibly the most useful of its four major branches is visual display. Linear and 
nonlinear display methods can be used to represent multivariant chemical data in two dimensions, thereby allowing 
the chemist an approximative visual examination of his data. This examination often determines the course of 
further action in a pattern recognition application and, in some cases, can actually allow the chemists to solve the 
problem using only the display. Several display methods are presented for comparison with the aid of two syn­
thetically generated data sets and two chemical examples. 

I n an earlier paper,2 the field of pattern recognition, 
a newly emerging discipline within artificial intelli­

gence, was introduced to the chemical literature. The 
paper used two examples to demonstrate that the meth­
ods of pattern recognition, when used in combina­
tion, provide a general approach to solving a class of 
data processing problems commonly encountered 
in experimental chemistry. A statement of the gen­
eral problem is: Can an obscure property of a col­
lection of objects (elements, compounds, mixtures, 
etc.) be detected and/or predicted using indirect mea­
surements, made on the objects, that are known to be 
related to the property via some unknown relationship ? 
Obviously, the problem is not only to find and predict 
the property, but also to try to find the mathematical 
relationship that links the measurements to the prop­
erty. Therefore, the problem can be considered as a 
mapping of objects from measurement space into 
property space. Screening chemical compounds to 
find the best performer for a particular process (med­
ical, agricultural, production, etc.) is an example that 
can clarify the above point. If a chemist knows of 
a few compounds that perform well in the process of 
interest, and a few compounds that perform poorly, 
he might want to find other compounds that show prom­
ise. The empirical method often used is to make a 
number of chemical and/or physical measurements 
on each of the known (previously tested) compounds 
to see if a discriminating measurement can be found 
that separates the good performers from the poor 
performers. In some cases, the measurements can 
be found in data handbooks and need not actually 
be measured. The obscure property, in this case, is 
the relative performance of each compound in the 
process. Hence, the problem reduces to mapping 
candidate compounds from measurement space to per­
formance space. 

All too often, a single discriminating measurement 
cannot be found, and only a combination of measure­
ments can provide the necessary information. When 
the number of measurements is small (<3), the human 
is the best pattern recognizer. However, when the 
number of measurements is large (>3) and the ob-

(1) (a) This work was performed under the auspices of the U. S. 
Atomic Energy Commission, (b) Department of Chemistry, Colorado 
State University, Fort Collins, Colo. 80521. 

(2) B. R. Kowalski and C. F. Bender, J. Amer. Chem. Soc, 94, 5632 
(1972). 

jects many ( > ~ 3 ) , the techniques of pattern recog­
nition can be most beneficial. 

Pattern Recognition Approach Display 

If the measurements for a particular application 
have been selected properly, it is reasonable to assume 
that "like" objects will have similar measurements. 
(This is, of course, in the context of the particular prop­
erty under study.) One method of representing the like­
ness among objects is to consider the objects as points 
in an ^-dimensional hyperspace, where n is the number 
of measurements made on each object. The values 
of the measurements are the coordinates that position 
each point in rc-space. The objects can be said to 
occupy a position in measurement space. Now as 
mentioned earlier, the goal is to map the points from 
this measurement space to some property or outcome 
space. If the property is known, and if some objects 
with known property are available, the application is 
termed supervised learning2 and is best solved by 
methods that are not within the scope of this paper. 
If, however, the sought-for property is not exactly 
known, or if examples are nonexistent the application 
is one of unsupervised learning.2 The practical dis­
tinction is whether or not the computer is given infor­
mation about the sought-for property. There are 
several methods to apply in the latter case; the class 
of methods examined in this paper is called display 
methods. The common goal of display methods is 
to represent the data structure of points in n-space by 
the same number of points in m-space where (n > m). 
In most cases, m is equal to 2. Clearly, this cannot 
always be done exactly and in most cases information 
loss is inevitable. However, most display methods 
seek to preserve information and, therefore, minimize 
the information loss according to some criterion. 
Within the applications experience of the authors, 
display methods are the most useful tools in pattern 
recognition. The reason for this, as mentioned above, 
is that the human is the best pattern recognizer in the 
familiar two- or three-dimensional space. If the data 
structure is not so complex as to be totally nonrepre-
sentable in two-space, then many applications can be 
solved by the scientist with the aid of display methods. 

Basically, there are two general approaches to dis­
playing 77-space (n will be assumed to be greater than 
2) in two-space: linear and nonlinear. The two-
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coordinate axes of the resulting two-space display can 
either be linear or nonlinear combinations of the n 
coordinates of the original n measurements. Popular 
display methods utilizing these two approaches will be 
discussed in some detail following a description of the 
data used to compare these methods. 

Data. Four different sets of data are used to aid the 
discussion of display methods. Two sets are composed 
of synthetically generated data and the other two sets 
use real chemical data. 

The first set of data consists of points on the surface 
and one point in the center of a three-dimensional 
cube. This set will be called CUBE, CUBE is a unit 
cube in the positive quadrant of three-space with one 
corner at the origin. Its 27 points are located at the 
corners, the center faces, half-way along each side, 
and one point at the center of this unit cube. 

The second set, called SPHERE, consists of 62 points 
on the surface of a sphere of unit radius and centered 
at the origin. Two points lie at each pole, 12 points 
are equally spaced at the equator, and 12 points lie 
at each of four latitude equally spaced between the 
poles and the equator. 

Data set three is an improved version of the second 
data set in the introductory paper2 and will be referred 
to as CHEM. CHEM consists of 64 points representing 
64 elements in six-space. The six measurements are 
(1) most important valence, (2) melting point, (3) co-
valent radius, (4) ionic radius, (5) electronegativity, 
and (6) AH of fusion. The object of the first study2 

using these data was to try to separate those elements 
with basic higher valence oxides from those with pre­
dominantly acidic higher valence oxides, and then to 
classify the amphoteric oxides as being slightly more 
acidic or basic. 

The sought-for property connected with CHEM is a 
continuous value as opposed to the sought-for property 
in the forth data set, ARROW, which is discrete (class 
membership), ARROW consists of 74 points in ten-space. 
The data are taken from an application of pattern recog­
nition to the source verification and artifact identifi­
cation study of archaeological obsidian.3 Forty-five 
samples of obsidian were collected from four known 
sources in a particular geographical region. Twenty-
nine obsidian artifacts (arrowheads, tools, etc.) strongly 
suspected as coming from these four sources were also 
collected. The problem, which was solved by pattern 
recognition,3 was to verify the existence of four sources 
and then to classify the unknown artifacts using the 
concentrations of ten trace elements measured on each 
sample. 

CUBE and SPHERE are common three-dimensional 
geometrical figures and are used to demonstrate the 
effect of the display methods on known data structures. 
The data were used as is and were not scaled or 
weighted. 

CHEM and ARROW represent chemical data sets of 
two often encountered types. Both of these data sets 
were autoscaled.2 In CHEM, the property (acidity 
and basicity) is a continuous value, whereas in AR­
ROW, the property is class membership, which is 
discrete. The latter set is really a classical type of ap­
plication for pattern recognition but the former demon-

(3) B. R. Kowalski, T. F. Schatzki, and F. H. Stross, Anal. Chem., 
44, 2176 (1972). 

• • • 
Figure 1. Projection of CUBE on two axes. 

strates the flexibility of pattern recognition. Display 
methods are quite useful in determining which type of 
property (continuous or discrete) is inherent in the data 
as will be demonstrated. 

Linear Projections 

Variable by Variable Plotting. Probably the most 
used data-projection scheme is the variable by variable 
plot. These two-space plots are useful because they 
eliminate a considerable amount of verbiage that would 
be necessary to convey the same amount of information. 
Although it seems almost trivial at first, the variable 
by variable (vxv) plot is a linear projection and is a 
logical starting point that must be included in a com­
parison of display methods. It should be understood 
that for an application involving n measurements 
(«-space), there are lj-in(n — 1) different plots that must 
be examined. The plots contain no projection errors 
and if all are examined, no information loss results. 
However, only a one by one comparison is possible 
and ljin{n — 1) can get to be a large number. In a 
real sense, the amount of information that is realized 
can be minimal. 

Because of the orientation of CUBE, the three possible 
vxv plots are all the same (Figure 1). Of the three 
possible vxv plots of SPHERE, only two are unique as 
shown in Figures 2 and 3. It is important to note that 
Figure 1 gives no hint of a three-dimensional structure. 
The situation is somewhat improved in Figures 2 and 
3. These figures will be useful for studying the more 
sophisticated methods. 

There are 15 independent vxv plots for CHEM and 45 
vxv plots for ARROW. In the interest of brevity, only 
a few are presented here. Figure 4 is the CHEM data 
plotting covalent radius vs. AH of fusion. Figure 5 is 
the CHEM data plotting melting point vs. ionic radius. 
While some separation is evident between the acids 
and bases in the two plots neither plot is adequate for 
the separation. A similar condition exists for the 
ARROW data. When iron is plotted vs. zirconium (Fig­
ure 6), sources two and four are nicely separated but 
one and three overlap badly. In Figure 7, titanium is 
plotted vs. barium and, while classes three and two are 
separated, one and four now overlap. The need for 
a better projection is evident from Figures 4-7. 

Rotation and Projection. The variable by variable 
plot is a true linear projection where the two coordinates 
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Figure 2. Projection of SPHERE on axes one and two (circles in­
dicate overlap). 

Figure 4. CHEM data projected on covalent radius and AH of 
fusion (overlapping points not shown). 
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Figure 3. Projection of SPHERE on axes one and three (circles in­
dicate overlap). 

have a trivial linear relationship to only two of the 
variables. Other types of linear projections are possible. 
Noll4 has shown that multidimensional hyperobjects 
can be rotated through any angle in any dimension 
and then projected onto a plane. By using two-
dimensional rotation matrices Ra(a), points in n-
space are rotated by angle a in the i,j plane. A full 
rotation in ^-dimensional space can be considered as 
1l%n(n — 1) two-dimensional rotations and the final 
rotation matrix R, in a four-dimensional space for 
example, is written as 

R = Ru(a1)Rn(ai)Rli(a3)R23(ai)Rii(a5)RUai) (1) 

Once the rotation is made, the points can be viewed 
as before, variable by variable, but now each new var­
iable is a linear combination of the original variables. 

Unless some information is known that indicates 
a certain rotation to be beneficial, it is most difficult 
to know actually how to start. However, if an inter­
active computer graphics terminal is available, all 
rotations can be made in real time. The effect is 
remarkable and an excellent three-dimensional per-

Figure 5. CHEM data projected on melting point and ionic radius. 

spective is possible. Figure 8 is the result of a slight 
rotation in two planes in the direction shown by the 
arrows. A comparison to Figure 1 gives a hint as to 
how real-time rotation and projection can give a three-
space perspective. Still, only three variables at a 
time can really be viewed which is only a slight im­
provement over two. The need to display points in 
higher dimensional spaces must rely on more sophistica­
tion. 

Eigenvector Projection. The Karhunen-Loeve trans­
formation6 is quite useful for feature selection in pat­
tern recognition. As a special case of this transforma­
tion a data display can be obtained. The Karhunen-
Loeve method creates new variables as linear combina­
tions of the original variables and can be thought of as 
automatic multidimensional rotation. A unique order­
ing is the result of this transformation. The first 
new variable contains the greatest amount of variance 
and each successive new variable contains the next 
greatest amount of the residual variance. In this way, 
redundancies in the data can be eliminated by trun­
cating the last few variables if their variance is zero or 
near zero. Thus, the transformation is optimal (in 

(4) A. M. Noll, Commun. ACM (Ass. Comput. Mach.), 10, 469 
(1967). 

(5) K. Fukunaga and W. L. G. Koontz, IEEE Trans. Comput., C-19, 
311 (1970). 
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Figure 6. ARROW data projected on the iron and zirconium meas­
urements (overlapping points not shown). 
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Figure 7. ARROW data projected on the titanium and barium 
measurements (overlapping points not shown). 

the sense that variance is preserved) for feature ordering 
and selection. 

The method starts by calculating the n variable (mea­
surement) means Xk (k = 1 to n) as 

X1 

1 m 
(2) 

where n is the number of variables and m is the number 
of points (objects). Next the covariance matrix C is 
generated, each element C 0 of which compares vari­
ables iandy as 

m _ 
Cu = Y^iXu-X1XXi1-X1) (3) 

I = I 

Next, the eigenvalues X* and eigenvectors M* for k = 
1 to n are calculated by solving 

C/x* — XfcMfc (4) 

For display purposes in two dimensions, the basis 
vectors /xi and ^2 corresponding to the two largest 
eigenvalues Xi and X2 would be used as a projection 
plane. The eigenvector plot is a linear projection 
because the new two-space coordinates are linear com­
binations of all the original coordinates. Additionally, 
the projection is the best linear projection that can be 
obtained (minimum mean-squared error of variance). 

Now since each eigenvalue is proportional to the 
variance along its corresponding eigenvector, a measure 
is available of the per cent variance retained by the 
eigenvector projection. This value, % V, calculated as 

%V = (X1 + X 2 )100 /£X i (5) 

is useful for determining the reliability of interpreta­
tions made using a projection. If % V is equal to 50, 
for instance, only one-half of the variance has been 
retained and interpretation will have a high risk. 

Figure 9 is the eigenvector plot (% V = 87) of the 
27 points in CUBE. Although Figure 8 looks more 
like a cube, Figure 9 is actually a better representa­
tion of the information. The circled points indicate 
overlapping points which can cause problems in inter­
pretation. Figure 10 is the SPHERE data projected on 
the two dominant eigenvectors (% V = 71). The 

Figure 8. Rotation of CUBE followed by projection on two axes. 

problem of overlapping points (again circled) is much 
more severe in this case and, even though the plot repre­
sents the best that can be done using a linear projec­
tion, interpretation would involve high risk. Figures 
11 and 12 are the eigenvector plots of CHEM (% V = 72) 
and ARROW (% V = 73), respectively. Although the 
primary goals of each application are met, namely, 
the different classes are separated, assigning classifi­
cations to the unknowns would again involve a high 
risk since almost 30% of the variance is lost in each 
projection. One of the useful facts obtained by exam­
ining Figures 11 and 12 is that there must be a large 
amount of redundant information in the measurements. 
This is so because the classes are linearly separable in 
two-space even though CHEM used six measurements 
and ARROW ten. The plots indicate that certain mea­
surements might be eliminated and that dimensionality 
reduction5 studies should be made. 

Before proceeding to nonlinear data display methods, 
two important points should be made. First, data 
containing axes of symmetry (CUBE and SPHERE) do 
not give unique projections, CHEM and ARROW do 
not suffer from this problem as most applications using 
nonsynthetic data do not. Second, all of the techniques 
described in this paper can be used to reduce n-space 
to m-space where n > m. Two-dimensional plots are 
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Figure 9. Eigenvector projection of CUBE (circles show overlap). 
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Figure 10. Eigenvector projection of SPHERE (circles show overlap). 

naturally most useful for this presentation and, there­
fore, most of the examples have m equal to 2. Using 
computer graphics,6 however, three-space plots can 
be quite useful. 

Nonlinear Mappings 

In the above section, linear display methods were 
referred to as projections. In this section, methods 
that produce displays with coordinates that are not 
linear combinations of the original n-space coordinates 
are discussed. The resulting displays are called maps. 

Specialized Maps. As might be expected, there are 
many criteria that can be used to map n-space to m-
space (n > m) in a nonlinear manner. Some of these 
methods closely resemble clustering and even clas­
sification methods. Since these specialized techniques 
can utilize any criteria that can come to mind, only a 
few will be mentioned to give a flavor of what can be 
done. 

Patrick, et al.,7 describes two particular mappings, 
called dovetail mapping and column mapping, that 
can be used to display multidimensional space in one 
dimension. The two methods are really indexing 

(6) J. W. Sammon, Jr., A. H. Proctor, and D. F. Roberts, Pattern 
Recog., 3, 37 (1971). 

(7) E. A. Patrick, D. R. Anderson, and F. K. Bechtel, IEEE Trans. 
Comput., C-17, 949 (1968). 
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Figure 11. Eigenvector projection of CHEM (overlapping points not 
shown). 
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Figure 12. Eigenvector projection of ARROW (overlapping points 
not shown). 

schemes and break up the entire n-space into finite 
sized n-dimensional regions. These regions are then 
given an identification index. If a point falls in a par­
ticular region, it is given the corresponding index. The 
index relates to a particular position on the real line. 
The two types of mappings are not unique but they do 
show logical approaches to display. 

Fukunaga and Olsen8 have presented an interesting 
technique (again nonlinear) for the two-dimensional 
display of multivariate data. The method uses one 
of three procedures to normalize the data, and then 
displays the points on a two-dimensional display whose 
coordinates are the Euclidean distances from two par­
ticular points in the n-space. In the two-class, super­
vised learning mode, the two points are the geometric 
centers of the two classes. The method preserves 
some geometric structure while putting heavy weight 
on class separability. In the unsupervised learning 
mode, the method closely resembles a cluster analysis2 

tool. The procedure starts by selecting a random line 
and, assuming that the points on either side of the 
line form two classes, the pseudo-class means are cal­
culated and the map displayed. The line is then 

(8) K. Fukunaga and D. R. Olsen, ibid., 917 (1971). 
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changed and the process repeated. Iteration continues 
until the class separation is reasonable. 

A number of other nonlinear methods have been 
suggested by Kruskal.9 These methods are not dis­
cussed in order to keep the size of this paper manage­
able. 

Nonlinear Mapping by Error Minimization. Possibly 
the most useful display of multidimensional data has 
been presented by Sammon10 and first applied to chem­
ical information by Kowalski and Bender.2 The 
method is called nonlinear mapping (NLM) and uses 
a logical criterion (preservation of interpoint distances). 
The procedure suggested by Sammon10 has been sig­
nificantly modified and is presented in the following. 

The eigenvector plot, described above, is used as 
the starting configuration for the NLM map. AU of 
the n-space interpoint distances, d{j*, are calculated as 

da* = [ E1(^* - *«)21 A (6) 
and all of the two-space interpoint distances, dih are 
calculated as 

da = [(Yn* - Yfly + (Y t2 - 7fl)»]V. (7) 

where the Y's are found by the rotation matrix that di-
agonalizes C in eq 4. The object here is iteratively to 
change the two coordinates (Ya and Ya) for each point 
Yi so as to minimize an error function E, defined as 

E(P) = E — ( d » ¥ (8) 

The minimization attempts to preserve interpoint dis­
tances by finding dtj'& that are as close as possible to 
dti*'s. Here, (di}*y is a weighting factor whose effect 
is examined later. Since the ofw*'s are constants for 
any given application, the unknowns in this error 
function are the two-space coordinates from eq 7. 

The distance function used in this paper is the com­
mon Euclidean distance but any distance function 
can be used. The generalized Mahalanobis distance11 

is 

Y,(Yik - Y(k)
p). (9) 

and provides a selection of possible functions. White12 

has suggested the use of the Hamming metric 
m 

H11= E l Yik - Ylk\ (10) 
& = i 

which has certain computational advantages. 
In order to iteratively change the two-space coordi­

nates and minimize E, a gradient method should be used. 
Sammon10 suggests the method of steepest descent. 
Since the minimization may involve considerable com­
putation, careful selection of a technique is important. 
The method used here is the Polak-Ribiere13 method 
which is similar to the well-known Fletcher-Reeves14 

conjugate gradient method. Since this method is 
adequately described and a computer program is 

(9) J. B. Kruskal, Psychometrika, 29, 115 (1954). 
(10) J. W. Sammon, Jr., IEEE Trans. Comput., C-18, 401 (1969). 
(11) P. C. Mahalanobis, Proc. Nat. Inst. Set. India, 122, 49 (1936). 
(12) I. White, IEEE Trans. Comput., 220 (1972). 
(13) E. Polak, "Computational Methods in Optimization," Academic 

Press, New York, N. Y., 1971, p 53. 
(14) Reference 13, p 52. 

Figure 13. Nonlinear map of CUBE. 

outlined in the reference cited, the details will not be 
given here. 

NLM would be a difficult method to understand if 
it was not for a very useful analogy in physics. The 
analogy comes from the study of forces exerted on 
springs. Let us assume that we have a collection of 
points in three-space and we wish to use NLM to map 
them to two-space. Now, if every point is connected 
to every other point by a tensionless spring, the total 
energy in the springs would be zero in three-space. 
Equation 8 can be used to estimate the total energy 
in the springs where di}* is the length of the spring 
between points i and j in the original three-space and 
dtj is the length of the compressed spring after map­
ping to two-space. A linear projection method simply 
rotates the collection of points in three-space and then 
collapses them onto a plane. The points are not al­
lowed to move laterally during the projection and a 
possible result is overlapping points as is the case in 
Figures 9 and 10. The energy in the springs is quite 
high in these cases. NLM on the other hand allows 
the points to move about freely so that overlap is elim­
inated and the squeezed, two-space configuration has 
the minimum tension (energy) in the springs. Thus, 
finding this lowest energy two-space configuration is 
equivalent to minimizing eq 8 with respect to the two-
space coordinates. 

Figure 13 is the NLM of CUBE after allowing a cer­
tain number of iterations. This figure should be com­
pared to Figure 9. The four elipses enclose points 
that overlapped in Figure 9. 

Figure 14 is the NLM of SPHERE. In this case, as 
in Figure 13, the value of p in eq 8 is 2. This corre­
sponds to an equal weighting of small and large dis­
tances. In other words, the same amount of effort is 
spent preserving distances of all magnitudes. Using 
the spring model, this means that all of the springs 
have the same spring constant. When p is equal to 
— 2, as in Figure 15, the large distances are preserved 
at the expense of the small distances. The distortion 
is clearly shown by comparing Figures 14 and 15. 
In order to see the improvement of NLM over eigen­
vector projection, Figures 10 and 14 can be compared. 
The problem of overlapping points is solved by NLM. 

Figure 16 is the NLM of CHEM. Again, as in 
Figure 11, the acidic oxide elements are easily separated 
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Figure 14. Nonlinear map of SPHERE (p = 2 in eq 8). Figure 16. Nonlinear map of CHEM. 
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Figure 15. Nonlinear map of SPHERE (p = —2 in eq 8). Figure 17. Nonlinear map of ARROW. 

from the basic oxide elements. However, classifi­
cation of the unknowns (amphoterics) is considerably 
more reliable using Figure 16. In fact, the error (eq 8) 
drops by more than four orders of magnitude going 
from Figure 11 to Figure 16. 

The eigenvector plot of ARROW (Figure 12) can be 
compared to the NLM (Figure 17) of ARROW. In 
both figures, the four classes are separated, but classifi­
cation of unknowns is more reliable using Figure 17 
because the actual data structure is more faithfully 
represented in the latter. Actually, the real value of 
these figures does not lie in classifying unknowns. 
Rather, the advantage stems from allowing the scien­
tist to better understand the type of data he must 
analyze. Looking only at the knowns in Figures 16 
and 17 it is clear that the two classes in CHEM are sepa­
rable but not distinct. This suggests some kind of 
scale or continuous value moving from acids to bases 
as indeed is the case. It is also clear that ARROW is 
not of the same type, but rather consists of discrete 
classes. 

Conclusion 

Display methods are usually the first step in a pattern 
recognition application. They are the first contact 
that the scientist has with the information and, since 
a study of the display often determines the course of 

further action, they form a very important branch of 
pattern recognition. If the data have a simple structure, 
quite often the scientist can complete the application 
using only the display. If the data structure is com­
plex, pattern recognition methods from the preprocess­
ing, cluster analysis, and classification branches can 
be applied. If a large amount of redundancy is present, 
as in CHEM and ARROW, preprocessing will almost cer­
tainly involve dimensionality reduction. If known 
classes overlap in the display, they may still be sepa­
rated in n-space by any one of a number of classifica­
tion methods. Hence, display methods are most useful 
because they allow the scientist an approximative "look" 
at his data. 

It is worth emphasizing a point made in the intro­
ductory paper.2 The true value of pattern recognition 
is realized when several methods are used in combina­
tion as a system. Each method affords a different 
approach to processing the multivariant information. 
Thus, since the computer programs are relatively inex­
pensive to run, display methods nicely complement the 
other branches of pattern recognition. In this way, 
they can be used, most effectively, for displaying the 
results of cluster analysis and classification. All of 
the methods described herein are part of a collection 
of pattern recognition methods used at Lawrence Liver-
more Laboratory. 
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I t is well known that the most stable conformations 
of ethane (CH3CH3) and monosubstituted ethanes 

(XCH2CH3) are staggered. For these molecules, the 
three staggered conformations generated in a 360° ro­
tation of the methyl group are equivalent and an energy 
of approximately 3 kcal mol - 1 is required for their 
interconversion. On the other hand for 1,2-disub-
stituted ethanes (XCH2CH2Y) rotation about the cen­
tral C-C bond leads to nonequivalent staggered ar­
rangements corresponding to a trans and a pair of 
gauche structures. If the internal rotation potential 
function has minima near these staggered arrange­
ments, the molecule will have distinct rotational iso­
meric forms (rotamers). Additional rotational iso­
mers may arise through rotation about C-X and C-Y. 
Although interconversion of such rotamers in general 
also requires relatively little energy and is therefore 
quite rapid at ordinary temperatures, there is substan­
tial evidence for their separate existence. Information 
on the structures and relative energies of the separate 
rotamers and the potential barriers between them has 
been obtained by numerous experimental techniques 
including infrared, Raman, nuclear magnetic resonance 
and microwave spectroscopy, dipole moments, electron 
diffraction, electrical birefringence, ultrasonic absorp­
tion, and calorimetry.2 

Molecular orbital theory has not yet been extensively 
applied to 1,2-disubstituted ethanes. The only such 
molecule studied by ab initio methods has been n-
butane.3'4 For monosubstituted ethanes, on the other 

(1) Author to whom correspondence should be addressed. 
(2) For reviews, see: (a) S. Mizushima, "Structure of Molecules 

and Internal Rotation," Academic Press, New York, N. Y., 1954; 
(b) N. Sheppard, Advan, Spectrosc, 1, 288 (1959); (c) E. L. Eliel, 
"Stereochemistry of Carbon Compounds," McGraw-Hill, New York, 
N. Y„ 1962; (d) E. L. Eliel, N. L. AUinger, S. J. Angyal, and G. A. 
Morrison, "Conformational Analysis," Interscience, New York, N. Y., 
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/ . MoI. Struct., 6, 1 (1970). 

(3) J. R. Hoyland, J. Chem. Phys., 49, 2563 (1968). 
(4) L. Radom and J. A. Pople, J. Amer. Chem. Soc, 92, 4786 (1970). 

the helpful suggestions made by James L. Booker of 
the Bureau of Investigational Services, California 
Department of Justice, that greatly improved the 
CHEM data. 

hand, a general theoretical study has had some success 
in describing internal rotation.56 We are therefore 
encouraged to apply the same method to the disub-
stituted systems. In this paper we give results for all 
the distinguishable staggered conformations of the set 
of saturated molecules XCH2CH2Y (X, Y = CH3, 
NH2, OH, F) and compare the calculated energies with 
experimental results where possible. This corresponds 
to a complete mapping of the internal rotation poten­
tial hypersurface at a 120° grid. This is too coarse to 
determine positions and numbers of local minima pre­
cisely, but it does indicate some of the broad features of 
the surfaces. For w-butane, n-propyl fluoride, and 1,2-
difluoroethane, a more complete study is made. In 
addition, for all the molecules we consider the energy of 
interaction between substituents in terms of bond sep­
aration energy concepts developed earlier.78 

Method 
Standard LCAO-SCF molecular orbital theory9 

with the extended 4-3IG basis set10 is used. Ideally, 
complete optimization of bond lengths and bond angles 
would be desirable. However, for the relatively large 
set of molecules discussed here, the computation time 
required to do this would be too great. For one mole­
cule (n-butane), we use partially optimized geometries, 
but in all other cases, bond lengths and angles are given 
the standard values listed by Pople and Gordon.11 

The results we obtain are clearly subject to the errors 
inherent to this approximation. All staggered confor­
mations of the molecules XCH2CH2Y have been con­
sidered. The notation used to specify the rotational 

(5) L. Radom, W. J. Hehre, and J. A. Pople, ibid., 93, 289 (1971). 
(6) L. Radom, W. J. Hehre, and J. A. Pople, ibid., 94, 2371 (1972). 
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Phys. Lett., 5, 13 (1970). 
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Chem. Soc, 92, 4796(1970). 
(9) C. C. J. Roothaan, Rev. Mod. Pyys., 23, 69 (1951). 
(10) R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 

724(1971). 
(11) J. A. Pople and M. S. Gordon, J. Amer. Chem. Soc., 89, 4253 

(1967). 
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Abstract: Ab initio molecular orbital theory is used to study internal rotation in the complete set of 1,2-disubsti­
tuted ethanes XCH2CH2Y (X, Y = CH3, NH2, OH, or F). Conformational predictions are in agreement with 
available experimental data. Factors which are found to influence the conformational preferences include steric, 
dipolar, and hyperconjugative interactions and intramolecular hydrogen bonding. 
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